
 1

Ada User Journal Volume XX, Number Y, ZZZZ 2022

ASIS vs. LibAdalang: a Comparative Assesment

J-P. Rosen

Adalog, 2 rue du Docteur Lombard, 92130 Issy-Les-Moulineaux, FRANCE; email: rosen@adalog.fr

Abstract

This paper compares the origins, features, and status
of two different tools intended to facilitate static
analysis of Ada programs: ASIS and LibAdalang.

It stresses the differences in principles, features, and
intended usages, and shows use cases where each is
more appropriate.

Keywords:Ada, static analysis, ASIS, LibAdalang.

1 Introduction

Ada is a language which is both large and complex to

compile. Any tool that aims at providing some form of

static analysis of an Ada program must cope with visibility

rules, overloading resolution, generic instantiations,

defaulted parameters, etc.

For example, consider the simple statement:

V := A (B);

Possible interpretations are:

• A is a function, B is the parameter

• A is an array, B is an index

• A is a type, B is converted to A

• A is a parameterless function call returning an

array, B is an index

• A is a pointer to a function, B is the parameter

And of course, B can be a constant, a variable, or a function

call...

Starting an analysis tool from scratch would require almost

rewriting half of a compiler. To avoid this effort and foster

the development of language tools, ASIS was developed as

an API to access the decorated AST (Abstract Syntax Tree)

produced by the compiler. More recently, AdaCore [2]

developed an alternative solution named LibAdalang.

Developers of Ada tools have now two competing

solutions, and are faced with fundamental decisions:

• When developing a new tool, which solution is

more appropriate?

• When evolving an ASIS tool, is it appropriate to

invest time and money for moving it to

LibAdalang?

This paper aims at providing some material to help

answering these questions.

2 Origin

ASIS

ASIS [1] is an international standard, first developed for

Ada 83, then updated to Ada 95. It was developed by an

international committee (the ASIS working group), and

built upon experience gained from previous attempts to

standardize an intermediate representation for Ada, notably

DIANA [3].

Several compilers provide the ASIS interface. The standard

was not evolved for subsequent updates of Ada, however

implementations, especially the AdaCore one, continued to

add support up to Ada 2012. AdaCore announced however

that their implementation would not be upgraded to support

Ada 2022.

LibAdalang

LibAdalang is an independent, self-funded development of

AdaCore. It is developed by a dedicated team from

AdaCore. It is an open-source project
1
 available on GitHub

[2], and the team welcomes comments from the

community; however, there is no control of any official or

international body over the design decisions.

3 Fundamental principles

ASIS

ASIS is an API to explore and get information from the

decorated syntactic tree, as produced by the associated

compiler. This guarantees that a tool based on ASIS will

see the code exactly as the compiler sees it, including

implementation dependent elements allowed by the

standard, and elements defined in the System and Standard

packages. However, this implies that an ASIS

implementation is linked to a certain compiler. A tool based

on ASIS tool must provide specific versions for each

supported compiler.

Since ASIS operates on a tree resulting from a successful

compilation, it cannot handle incorrect or incomplete code.

For the same reason, it was a deliberate design decision to

not provide any operation that would modify, or even add

information, to the syntactic tree. It is purely oriented

towards analysing a program, with no way to modify it.

LibAdalang

LibAdalang includes its own analyser and tree constructor,

which is part of the library, and embedded with any

1
 This is assumed from the long-time involvement of AdaCore

with free software. However, at the time of writing, the project

distribution has no mention saying “LibAdalang is free software”;

this is likely to be an omission, but it makes the copyright status

unclear.

2 Template for Ada User Journal

Volume XX, Number Y, ZZZZ 2022 Ada User Journal

application that uses it. A LibAdalang application is

therefore stand-alone, independent of any compiler, and

can be used even without an Ada compiler on the target

machine. On the other hand, there is no guarantee that the

view of the program provided to the tool is strictly

equivalent to the compiler’s view, nor that packages

System and Standard match the ones of the compiled code.

More precisely, LibAdalang will happily accept any

program which is syntactically correct, even if it is not

semantically correct. For example, no error is diagnosed in

the following program:

procedure Incorrect is

 I : Integer;

begin

 I := 1.0; -- Typing error

end Incorrect;

A goal of LibAdalang was to be usable in contexts such as

syntactic editors, where the source can be incorrect, and to

be able to fix such incorrect code or to automatically

complete it. Of course, there are limitations to what can be

achieved on incorrect code, since almost nothing can be

assumed. LibAdalang provides operations to modify the

underlying tree and the original source.

Moreover, LibAdalang provides a Python interface for

developing rapid applications or interactively trying the

interface.

4 Style and organization

ASIS

 ASIS has a root package (Asis) that defines the basic

entities used by the rest of the API. Child units group

queries according to the structure (chapter and clauses) of

the Ada reference manual: Asis.Declarations,

Asis.Definitions, Asis.Expressions, Asis.Statements, etc.

Other packages are provided for initialization and loading

of compilation units, accessing the source text of any

element, etc.

The tree managed by ASIS is strictly the abstract syntax

tree (AST) as defined by the syntax of the language;

concrete elements that are not syntactic elements

(comments, semi-colons, spaces) do not appear in the tree.

It is possible to access the source corresponding to a node

in the tree, but only as text. This makes it more complicated

to develop applications like pretty printers that deal mainly

with the physical appearance of the program [4].

LibAdalang

LibAdalang provides only two packages related to analysis:

Libadalang.Common and Libadalang.Analysis. The root

package Libadalang is almost empty and serves only as the

parent of the hierarchy. Libadalang.Common groups

general declarations of types and subprograms used in the

rest of the API, including declarations intended only for the

implementation of the library, and not for the user of

LibAdalang. Libadalang.Analysis gathers all syntactic and

semantic queries in a single package; as of this paper, the

specification of Libadalang.Analysis contains 15992 raw

lines, including 14154 lines in the visible part.

Other packages are provided for initialization and loading

of compilation units, changing program text on the fly, etc.

In addition to syntactic elements, LibAdalang keeps all

syntactic tokens, including trivias representing the concrete

representation, like spacing in the source, semi-colons,

comments, etc. The goal is to be able to manipulate the

concrete representation of the program as well as its

abstract structure.

5 Typing system

ASIS

All Ada elements are of a single type: Element. Subtypes

are provided for documentation purposes, like:

subtype Declaration is element;

but since there are no constraints, there is no compile-time

check that an element belongs to the expected subtype. The

hierarchy of syntactic elements is accessible through a

number of classification functions returning enumeration

types that tell the precise “kind” of the element. For

example, the function Element_Kind returns a value like

A_Declaration, An_Expression, A_Statement… If the

element is a declaration, the function Declaration_Kind

returns A_Subtype_Declaration, A_Variable_Declaration,

A_Constant_Declaration ...

Every query expects its argument to be of certain kinds,

and checks it at run-time (and raises the exception

Inappropriate_Element if the checks fails). This means that

ASIS is strongly, but dynamically typed.

This comes as a surprise to many Ada users who are more

accustomed to static strong typing. However, this simplifies

navigating through the syntactic tree, since it is often not

possible to foresee the exact nature of the result of a query.

For example, it is very common in tools to navigate “up”

the tree. A simple loop to find which procedure body

encloses a certain element can be done simply, thanks to

dynamic typing:

declare

 E : Asis.Element := Some_Query (...);

begin

 while declaration_kind (E)

 not in A_Procedure_Body_Declaration

 loop

 E := Enclosing_Element (E);

 end loop;

end;

LibAdalang

LibAdalang represents elements as a hierarchy of tagged

types, rooted at Ada_Node:

type Ada_Node is tagged private;

type Expr is new Ada_Node with private;

type Name is new Expr with private;

…

J-P. Rosen 3

Ada User Journal Volume XX, Number Y, ZZZZ 2022

The whole hierarchy of elements contains 373 different

types. Queries require parameters of the appropriate type,

but return values of the specific type Ada_Node. These

values must be converted to the appropriate type using ad-

hoc conversion functions, which raise an exception if their

argument is not of the appropriate kind. Here is a typical

example of this programming pattern:

case Kind (Node) is

 when Ada_Call_Expr =>

 for Assoc of As_Assoc_List

 (F_Suffix (As_Call_Expr (Node)))

 loop

 ...

 end loop;

 ...

end case;

Here, Node is obtained from a previous query, and is of

type Ada_Node, and its real kind is obtained by the Kind

function. Since F_Suffix expects a parameter of type

Call_Expr’Class, it must be converted by the special

function As_Call_Expr. Of course, this function will raise

an exception (Constraint_Error) if the parameter does not

correspond to the expected type.

Despite the apparent stronger typed hierarchy of elements,

LibAdalang is also dynamically typed: if a node does not

belong to the expected kind for a query, it will be checked

at run-time by the corresponding “As_...” function instead

of the function itself. On the other hand, the stronger typing

makes exploring the tree more difficult; for example, the

simple loop of the previous example has to be replaced by

the following recursive function:

function Enclosing_Proc (N : Ada_Node'Class)

 return Ada_Node'Class

is

begin

 if Kind (N) in

 Ada_Subp_Kind_Procedure | Ada_Subp_Body

 then

 return N;

 else

 return Enclosing_Proc (Parent (N));

 end if;

end Enclosing_Proc;

6 Tree traversal

Tree traversal is the process by which a program explores

the whole program under analysis.

ASIS

ASIS provides a generic traversal function, which must be

instantiated to provide the actual traversal function:

generic

 type State_Information is limited private;

 with procedure Pre_Operation

 (Element : Asis.Element;

 Control : in out Traverse_Control;

 State : in out State_Information)

 is <>;

 with procedure Post_Operation

 (Element : Asis.Element;

 Control : in out Traverse_Control;

 State : in out State_Information)

 is <>;

procedure Traverse_Element

 (Element : Asis.Element;

 Control : in out Traverse_Control;

 State : in out State_Information);

The Pre_Operation procedure is called when entering a

node in the AST, before traversing the children, while the

Post_Operation procedure is called when returning to the

node after traversing the children. In addition, a variable of

the (user provided) type State_Information is passed along.

This makes it convenient to initialize information when

reaching a node, gathering information while traversing the

children, and using the result when returning to the node.

Each of the operations returns a value of the enumeration

type State_Information; possible values are Continue

(normal case), Abandon_Children (child nodes are not

traversed), Abandon_Siblings (return immediately to the

parent node), and Terminate_Immediately.

LibAdalang

LibAdalang provides a traversal function where the

processing of the node is provided as a pointer to an

appropriate function:

function Traverse

 (Node : Ada_Node'Class;

 Visit : access function (Node : Ada_Node'Class)

 return Visit_Status)

return Visit_Status;

The Visit function is called when entering a node in the

AST, before traversing the children. The enumeration type

Visit_Status can take the values Into (continue normally),

Over (child nodes are not traversed) and Stop. There is no

equivalent to Abandon_Siblings.

There is no provided function to perform processing when

returning to the node after traversing the children; if this is

desired, the Visit function must manually invoke Traverse

on child nodes and add the necessary processing after it

returns. Since there is no associated data, information must

be gathered in a global variable, or equivalent data

structure.

7 Documentation

ASIS

The official documentation is the ASIS standard itself. It

provides a good description of how to build an ASIS

application and examples, in addition to the API itself. But

4 Template for Ada User Journal

Volume XX, Number Y, ZZZZ 2022 Ada User Journal

being an ISO standard, it is a copyrighted document that

must be bought from ISO at usual ISO price (currently,

CHF 198).

However, AdaCore’s implementation comes with an ASIS

user guide that provides appropriate guidance on how to

build an ASIS application.

The API itself is self-documented. The naming convention

of the structural queries follows strictly the names and the

syntax used in the ARM, making it easy to find the desired

function. For example, the syntax of an assignment in the

ARM is given as:

variable_name := expression;

The corresponding structural queries will be:

function Assignment_Variable_Name

 (Statement : Asis.Statement)

 return Asis.Expression;

function Assignment_Expression

 (Statement : Asis.Statement)

 return Asis.Expression;

Each query states precisely the kinds of expected elements,

and the kinds of the provided result. For example, the

comments on the above Assignment_Variable_Name

function state:

-- Statement - Specifies the assignment statement to query

-- Returns the expression that names the left hand side of the

-- assignment.

-- Appropriate Element_Kinds:

-- A_Statement

-- Appropriate Statement_Kinds:

-- An_Assignment_Statement

-- Returns Element_Kinds:

-- An_Expression

Structural queries have names starting with

“Corresponding_”, making it easy to read and understand.

For example, the query used to find the declaration of a

given name is called Corresponding_Name_Declaration.

LibAdalang

LibAdalang comes with a user guide, providing a detailed

explanation of how to create an application, both in Python

and Ada.

The API has a layout that shows that it is still work in

progress: no header comments, lots of useless blank lines,

poor indentation… The naming convention of queries bears

no relationship to the reference manual; for example, the

syntactic element Selector in Ada is called Suffix in

LibAdalang. Many names use abbreviations whose

meaning is far from obvious, when not misleading. For

example, the query that returns the list of names that follow

a with clause is named F_Packages… although a with

clause can refer to units that are not packages!

Queries are divided into those that return “fields” of the

underlying structure (i.e. structural queries) and those that

return “properties” (i.e. semantic queries). The first ones

have names that start in F_ and the second ones have names

that start in P_, a convention that may be useful to the

implementation, but makes the reading quite unnatural. The

documentation (in the accompanying document or in the

comments in the package) is often missing, or simply states

what kind of nodes is contained in the corresponding field -

often with misleading information. For example, the

documentation of the F_Dest query for an assignment (the

left-hand side of the assignment) mentions as possible

fields Attribute_Ref, Char_Literal, and String_Literal, while

actually these cannot appear as the destination of an

assignment statement!

8 Extra functionalities

ASIS

The ASIS standard defines just an API. Helper utilities can

be provided by the implementation, but there is no

requirement to do so.

The AdaCore implementation provides a utility called

Asistant that allows exercising interactively all queries of

the API. It is very useful to understand the exact behaviour

of the queries, but it is not intended as a way of quickly

analysing a program.

As part of the distribution of AdaControl [5], Adalog

provides a small utility called ptree that prints a semi-

graphical representation of the syntactic tree, as obtained

from ASIS; this is handy in understanding the structure of

the AST.

LibAdalang

LibAdalang provides a Python API in addition to the Ada

API. This can be used to exercise queries as well as for

developing quickly and interactively small analysis tasks.

Of course, the Ada programmer will prefer the Ada

interface for applications with a long lifetime…

For quick development of a command line application,

LibAdalang provides the generic package App, which can

be instantiated with a procedure traversing the tree, and sets

up automatically all the environment, including command

line parameters analysis, setting of the environment, etc.

An associated project is LKQL (LangKit Query Language),

a language intended to provide language queries on top of

LibAdalang.

9 Pros and Cons

ASIS

Pros: ASIS works on legal code, after analysis by an Ada

compiler that passes the validation. This provides great

confidence that the program is analysed in conformance

with the standard, and that the content of packages

Standard and System match the ones used by the compiler.

It comes with a complete documentation in the API,

strongly linked to the Ada Reference Manual, making it

easy to retrieve the necessary queries and to understand its

effects.

Cons: The fact that ASIS works only on legal code and

cannot change the tree or the corresponding source makes it

J-P. Rosen 5

Ada User Journal Volume XX, Number Y, ZZZZ 2022

inappropriate for interactive applications, such as IDEs,

where the source is incomplete or evolving. Although

AdaCores’s implementation processes all versions of Ada

up to Ada 2012, an update of the standard to the latest

version of Ada would be welcome.

LibAdalang

Pros: LibAdalang is able to work on incomplete/incorrect

code and provides sophisticated support to the concrete

representation of the program, as well as editing and

modifying the original text. It processes the latest version

of the language.

Cons: As there is no connection to the compiler, there is no

guarantee that LibAdalang’s view of the program

corresponds the compiler’s view or to the Ada standard. An

analysis tool cannot rely on the fact that there is no

diagnosis to trust that Ada rules are being obeyed; therefore

the tool should be run only on programs that have been

successfully compiled with a full Ada compiler.

The typing system and the distance between Ada’s formal

definition and the analysis packages, as well as the lack of a

number of useful features, makes it less fit for deep

analysis of Ada code.

The development of LibAdalang is fully under control of

AdaCore without external review, and of course it is not a

standard, nor expected to become one.

Conclusion

ASIS and LibAdalang cover different parts of the spectrum

of code analysis tools. ASIS, thanks to its precise

specification, its close connection to the Ada definition, and

its guarantee of semantic correctness of the analysed code,

is more appropriate for long lived tools, and especially

tools expected to be used in demanding domains like

instrumentation or control of safety critical software, The

dynamic aspect of LibAdalang is well suited for all the

tasks that require close connection to the source, user

interaction, or dynamic modifications, like syntactic

editors, code generators, and code transformation tools.

Given the fundamental differences in philosophy and

typing systems between ASIS and LibAdalang, moving a

tool from ASIS to LibAdalang cannot be done easily and

would require a complete rewrite.

References

[1] ISO/IEC 15291: Information technology —

Programming languages — Ada Semantic Interface

Specification (ASIS)

[2] https://github.com/AdaCore/libadalang

[3] Goos, Gerhard; Winterstein, Georg (1980). "Towards a

compiler front-end for Ada". Proceedings of the ACM-

SIGPLAN symposium on Ada programming language.

Annual International Conference on Ada. ACM-

SIGPLAN. pp. 36–46.

[4] S. Rybin & A. Strohmeier : " About the Difficulties of

Building a Pretty-Printer for Ada”, proceedings of the

Reliable Software Technologies — Ada-Europe 2002

conference, June 2002.

[5] https://github.com/Adalog-fr/Adacontrol

[6] https://github.com/AdaCore/langkit-query-

language/blob/master/user_manual/source/language_re

ference.rst

