
 1

Ada User Journal Volume 29, Number 4, December 2008

A comparison of industrial coding rules

J-P. Rosen

Adalog, 19-21 rue du 8 mai 1945, 94110 ARCUEIL, France; email: rosen@adalog.fr

Abstract

AdaControl [1] is a (free) tool whose purpose is to
enforce coding standards and programming rules in
Ada programs. As AdaControl is more and more
widely used in the industry, we had to review many
industrial coding standards, in order to write the
corresponding AdaControl rules.

This paper presents our experience with rules of
various origins, analyzes the rules commonly
encountered, and provides some lessons-learned
about good and bad programming rules.

Introduction

With the raising of the use of its AdaControl tool, Adalog

has developed a growing activity in consulting and services

related to the checking of programming rules. This includes

helping QA people to define rules, improving AdaControl

to support new rules, and performing code reviews (both

automatically and manually).

This activity has lead us to reviewing coding standards

from many origins, but mainly from safety critical

domains: air-traffic management, avionics, railway

control… One could think that rules from these domains

should be, more or less, the same. If there is effectively a

core of generally accepted rules, there are also differences,

for good and sometimes bad reasons. In this paper, we first

present a classification of commonly encountered rules,

then we discuss the importance of automatically checking

the rules, and finally present some lessons learned.

Classification of rules

This "classification" is not intended as a formal taxonomy,

but rather as an experimental categorization of the

programming rules, intended to show the strengths, but also

the difficulties and sometimes the weaknesses of many

rules.

General useful rules

Some rules are of general interest, have clearly only

benefits. and are therefore commonly found. For example,

most projects require "only one statement/declaration per

line", "no single array declarations", "unit name must be

repeated after end"…

As another example, a simple and common rule is to

require that every use of an identifier uses the same casing

as in its declaration.

Some rules are very useful but extremely difficult to

enforce by manual inspection. For example, the "no local

hiding" rules forbids a local name from hiding an identical

name in an outer scope; it prevents confusion of variables

that depend on visibility rules.

Many projects do not use certain features of the language,

like tasking or tagged types. This results in general from a

design decision, made at the very beginning of the project.

It is then a good practice to explicitly forbid the use of the

corresponding language features.

The rule that prevents use of the 'Address attribute is

also commonly found, and is an important one, but for a

special reason. Although there are very legitimate uses of

addresses, experience shows that very often, use of

'Address results from insufficient knowledge of the

possibilities of Ada by people who come from other

languages with insufficient training. The goal of this rule is

thus not to prevent all usage of 'Address , but to make

sure that any use of it is justified and pair-reviewed.

Trivial rules

Some commonly found rules are of minimal value, simply

because they are always obeyed in practice. We call these

rules "trivial" because they might well be the only rules that

we never found violated in any project we had to review!

For example, almost every coding standard forbids using

the goto statement. Although the reasons are obvious, it is,

in practice, extremely rare to find violations.

Another example is a rule that forbids declaring identifiers

with the same names as entities defined in Standard. Of

course, violating this rule could cause horrible confusion,

but in practice, few programmers even know that they are

allowed to declare identifiers that hide the ones from

Standard!

It is also common to have a "rule" that forbids the use of

TAB characters in programs. Although there are of course

good reasons for it, it is hardly a rule; most editors have

features to eliminate tabs, so they go away without the

programmer being even aware of it. And otherwise, it is

very easy to write a simple clean-up program.

Redundant rules

It is very common to find rules that repeat other rules, in a

slightly different way, because they appear in a different

context or were defined for a different purpose.

For example, a rule may explicitly require that, when

assigning fields of records, there be only one field

assignment per line. This rule is obviously redundant with

the more general "one statement per line" rule. Another

example is a general rule that states that "a package spec

should export only entities that are used by other units",

2 A Compar ison of Industr ia l Coding Rules

Volume 29, Number 4, December 2008 Ada User Journal

and then have a rule that states that "if a type is declared in

a package specification and used only in the body, it shall

be moved to the body".

Such redundancies are annoying, because they are useless

and increase artificially the number of rules. Moreover, a

violation can (must?) be traced to several rules, thus

making reporting more difficult.

Layout and comments rules

Some guidelines go into deep details about the number of

characters that should be used for indentation, maximum

length of a line and how long lines should be folded, how

aggregates should be aligned, etc. A uniform presentation is

an important issue as far as understandability and

uniformity are concerned, however checking these rules

manually is almost impossible, and writing a tool to check

them automatically is roughly equivalent to writing the

corresponding reformatter. It is therefore better to require

the use of a reformatter (which is now included in every

syntactic editor) and go with whatever layout the

reformatter does, than to require a presentation that does

not correspond to any tool. Uniformity is important, exact

details of layout are not.

Various rules deal with comments. The easiest ones are

those that require a standard header for every compilation

unit. Automatic checking shows that this kind of rule is

harder to enforce than one may think. Although the headers

look conformant, there are very often small differences, like

extra comment lines, missing separators, incorrect number

of spaces at various places…

Header comments of subprograms are more difficult to

check, since they are expected to describe the purpose of

the subprogram and the semantics of the parameters –

something that can be checked only manually.

Sometimes, there is a requirement that certain declarations

(types, variables) be commented. Once again, a manual

check is required for this kind of rule, but systematic

checking requires inspecting all the code – something that

cannot be performed routinely. There is therefore a high

risk that such a rule stays as "recommended practice"

without systematic checking.

Finally, some projects require a density of comments in the

code (like "there must be 20% of comment lines"). In one

project, the rule document failed to define how the lines are

counted, which raises a number of issues: are blank lines

counted? Are header comments counted?

Rules that are not coding/programming rules

Many guides include rules that are more design or good-

practice rules than coding/programming rules. For

example, a rule that requires that "different types shall be

used to represent data from different domains". Although

such rules have value, they should be kept separate from

programming rules, because they cannot generally be

verified automatically. Typically, they should be checked

by pair-review, rather than by code inspection.

Controversial rules

Some rules are controversial, in the sense that various

projects take opposite decisions., either about whether to

allow some constructs, or in the way the rule should be

applied. Note that this is not surprising: a life-critical

project may impose rules that ensure maximum safety,

even at the cost of readability and maintainability, while a

less critical application may choose different trade-offs.

For example, almost every project imposes naming

conventions for various elements. But some projects

impose separating words in an identifier by the use of

capitalization and forbid underscores (like in LineLength),

while others prohibit that style, and require words to be

separated by underscores (like in Line_Length). Some

projects require type names to start with "T_", or end with

"_Type". Renamings are an interesting issue, as far as

naming convention is concerned: should renamings have

their own naming convention to show that they are aliases,

or should they follow the rule for the renamed entity?

Using the use clause is another controversial issue: some

projects disallow it altogether, other allow it only if

restricted to the innermost scope where it is useful, and

some place no restriction to it.

Some rules require systematic initialization of all variables

at the point of declaration. Although it may seem useful to

make sure that every variable receives a proper value

before being used, this is an interesting case of a rule that

may have adverse effects. The rule may induce people into

assigning a "default" value to variables (that may not be

appropriate) just to pass the check; this may in turn result in

more subtle bugs than those caused by a plain non-

initialized variable. For this reason, some rules forbid

systematic initialization (especially when the initialization

value is known to be overridden later on).

Insufficient rules

Some rules are intended for a certain purpose, but if they

are not properly formulated and/or explained, they can fail

to achieve their intended goal. For example, it is common

to disallow the use of predefined numeric types. This is

intended to promote the definition of higher level, more

abstract numeric types. However, in a project, this resulted

in the definition of types like "Int_8", "Int_16", and

"Int_32" that were used everywhere. There was some

benefit to it, as it made the program independent of the size

of the predefined integer types, but did not bring the

benefits expected from strong typing of numeric values.

Often, the rule does not assert all the consequences. For

example, there can be a rule that says "no package shall be

declared in a procedure". Such a rule is generally intended

to limit the complexity of subprograms, but does it also

apply to instantiations of generic packages? They are

formally local packages, but the rule would prevent, for

example, instantiating Integer_IO inside of an IO routine –

a very legitimate construct actually.

Sometimes, rules are written with a very narrow

perspective. We encountered a rule that said that "when an

J.-P. Rosen 3

Ada User Journal Volume 29, Number 4, December 2008

array is assigned in full, all components of the aggregates

should be named". But of course, assigning an array in full

does not necessarily use an aggregate; and what about

aggregates that appear in a context other than as the right

hand side of an assignment? Should the rule apply to record

aggregates? Clearly, the person who wrote the rule had

used aggregates only in very limited contexts, and wrote

the rule according to that usage.

Inappropriate rules

Sometimes, rules are clearly a legacy from other languages,

or simply show ignorance about Ada. For example, a

project required an order for declarations: constants, then

types, then variables (and failed to define an order for Ada

entities that had no Pascal equivalent, like packages and

exceptions!). This was clearly a remaining from the Pascal

philosophy, but prevented for example the grouping of

declarations that were logically related.

In another case, a rule required the presence of an "else"

part for every "if", leading to many "else null;" in the

program. This rule was derived from Misra-C, where it is

intended to prevent the "dangling else" problem in C. The

Ada syntax (which requires "end if") does not have this

problem, but the rule was reconducted anyway.

Another (funny) example is "rules" that forbid constructs

that are actually not legal Ada; we have encountered a

project that banned the use of anonymous array types as

record components, or default initialization of array

components … Such rules are harmless by themselves, but

create suspicion about the validity of other rules.

A special kind of dangerous rules are those that are justified

by efficiency considerations. Rules sometimes require or

forbid the use of some constructs for efficiency reasons.

Although this may seem justified in time-constrained

software, experience shows that actual measures of the run-

time cost of such structures have only very rarely been

performed; often, the rule just expresses the "intimate

belief" of those who wrote the rules, without the backing of

hard figures. Very often, these rules are not justified at all,

and may even force using less efficient constructs. Even

when such rules are justified, it must be remembered that

"inefficient" constructs may become very efficient with the

next version of the compiler.

A special (and even worse) case of the above is rules that

are intended to work around compiler bugs. Such rules tend

to stay forever, years after the bug has been fixed…

Note that it is often the motivation of the rule which is

wrong, not the rule by itself. For example, a project

required short circuit forms (and then and or else) rather

than plain and or or, on the ground that they were more

efficient. Such a general statement is highly likely to be

plain wrong – at least in some cases, and the gain in micro-

efficiency does not justify the rule. On the other hand,

another project had the same rule, but on the ground that it

would simplify unit testing, because each logical operation

would require only three tests instead of four with the

regular operators. This reason was perfectly acceptable.

Good rules that are harder to enforce than they
seem

Some rules are apparently well motivated, but very hard to

apply in practice, or (almost) impossible to check. For

example, several projects wanted to prevent the use of

"magic numbers", i.e. numerical values that appear directly

in the program text; instead, every such value should be

given a name, as a constant or named number. Obviously,

this rule cannot apply to literals used precisely in the

definition of constants and named numbers. But there are

many other cases where numeric literals cannot be avoided,

like in representation clauses for example. And in X**2, it

would be stupid to forbid the use of "2"… If taken too

literally, this rule would force people to declare constants

like Number_2, which would bring no benefit at all.

It is also common to find rules that prevent assignment to

fields of records, in favour of whole assignments with

aggregates. This is an important rule for maintainability,

since the addition of a component to a record will result in

illegal code everywhere the corresponding modification has

been omitted. But sometimes, you just want to assign a

value to one component: should you force a full aggregate

assignment in this case? Let us assume for a start that an

aggregate is required if every component is changed, and

that single assignment to a component is allowed if no

other component is changed. Where should the limit when

aggregate assignment is required be placed? If more than

XX components are changed? If less than YY components

are not changed? If more than ZZ% of the components are

affected? Making a rule which achieves the desired goal

and is still practical is far from obvious.

Rules not checkable by nature

Finally, some rules are, by nature, impossible to enforce

automatically, generally because they involve some value

judgement. This includes rules like "parentheses should be

used to improve readability", "elements should be grouped

in a package according to the logical structure", and of

course "identifiers should have meaningful names".

The checking of this kind of rule must be done manually. In

some cases, a tool can be of help by identifying

automatically the constructs that must be reviewed

manually; in other cases, checking the rule requires a

detailed reading of the whole source.

Actually, this kind of "rule" should really be guidelines,

and separated from the true coding rules.

The value of a tool for checking rules

In the previous chapter, we repeatedly addressed the issue

of the checkability of the rules. It is nice to issue rules, but

a rule is meant to be enforced; counting on programmers'

discipline simply does not work.

It must therefore be stressed that rules are of little value,

unless there is a tool to enforce them. No manual inspection

can approach the level of scrutiny provided by a tool;

actually, all of our clients were greatly surprised when we

ran AdaControl on their carefully reviewed code,

4 A Compar ison of Industr ia l Coding Rules

Volume 29, Number 4, December 2008 Ada User Journal

sometimes finding thousands of violations that had escaped

manual inspection.

Moreover, manual inspection is a lengthy and costly

process. It can be performed once for every major release

of the product, for example at the time of formal

certification for safety-critical software
1
, but can certainly

not be done routinely.

There are several such tools on the market: in addition to

Adalog's AdaControl, popular tools include AdaCore's

Gnatcheck, GrammaTech's Ada-Assured, LDRA's Testbed,

Logiscope's Rulechecker, and RainCode's Adarc.

Moreover, many compilers include options to enforce

coding rules at compile time. Some rules can even be

enforced by the language with the use of pragma
restriction.

An important issue when choosing a tool is ease of use in

day-to-day development. When rules checking is

performed late in the development process, one discovers

generally a huge amount of violations, and fixing them

requires a tremendous effort; it is sometimes extremely

difficult to do when the software has already gone through

various validation phases that would be ruined by massive

corrections. When the tool is integrated into the

development environment, programmers can run it

routinely each time they develop new modules or modify

existing ones, ideally by simply clicking a button in their

favourite IDE. The sooner checking is performed in the

development process, the better.

From this point of view, it could seem useful to have rules

checked directly by the compiler. But compilers do not

have such sophisticated and parameterizable rules like

dedicated tools have. Unlike language rules, programming

rules depend heavily on the kind and constraints of the

project; parameterization is therefore absolutely necessary.

Moreover, rules checking must also be performed by

quality assurance people, at the time of integration. Having

some rules checked by the compiler while other still require

the use of another tool would force QA people to run two

tools as part of the process, with different outputs that are

hard to merge. Therefore, even if the compiler does some

checks, it is important that the rule checking tool be able to

enforce also rules checked by the compiler.

Lessons learned

How to define "good rules"

Providing a good set of programming rules is not easy.

Sometimes, it seems that rules are there just for the sake of

having rules; occasionally, rules may have an effect

opposite to their intent.

1
 but at that time, it is generally too late to correct

massive violations, and the project ends up with a

document to justify why the violations are not safety-

critical, rather than fixing them.

It is therefore important that every rule be motivated and

justified. Some of the questions that need be answered to

check the value of a rule are:

§ What is the problem that this rule will

prevent/minimize?

§ Is this rule really necessary?

§ What are the possible adverse or perverse effects

of the rule?

§ Is this rule automatically checkable?

§ What are the cases where the rule should not be

obeyed?

Of course, it does not make sense to reinvent the wheel

every time. A programming rules document should start

from some existing and recognized document, like the

famous "Ada Quality and Style Guide" [2], which is

actually a generic template intended precisely to serve as

the basis for coding standards. It was surprising that,

among the documents we reviewed, many of them didn't

even quote the Ada Q&S Guide, although they often

referred to coding standards from other languages…

Another valuable source of inspiration is the NASA coding

standard for the Goddard Dynamic Simulator, which is

freely available on the internet [3].

Coding rules should really be coding rules. They should be

defined separately from design rules, and also from

guidelines, which are common sense recommendations that

cannot be specified – and even less checked – formally.

Rules should be proposed by QA people, but should be

reviewed and discussed with programmers and language

experts. Otherwise, there is a risk that the cost of a rule,

even a perfectly reasonable one, be higher than its benefits,

for reasons linked to the technical details of the project.

It should be also understood that developing a good set of

rules is an iterative process; experience shows that some

rules are useless, some have an adverse effect, and some

are missing. There should be a process for getting feedback

from the developers and improving the rules document.

Derogations

When a rule is proposed, it is very important to be aware

that there will be cases where the rule should not be

obeyed. Derogations to a rule are normal; however,

derogations should only be granted by QA, after review and

justification.

Failing to recognize the need for derogations can lead to

two equally bad effects:

§ Either force application of the rule in any case,

often resulting in twisting the code to match the

rule with a very poor result as far as quality is

concerned

§ Or simply abandon the rule, on the ground that it

cannot always be applied.

J.-P. Rosen 5

Ada User Journal Volume 29, Number 4, December 2008

Therefore, every coding standard should include a process

for requesting a derogation, and tools should provide a way

to ignore violations at indicated places. The process for

granting a derogation when appropriate should not be too

heavy; otherwise, it may appear simpler to the programmer

to obey by the rule, even where not appropriate, rather than

to request a derogation.

Form of the document

The coding rules document should ideally specify, for each

rule:

§ The statement of the rule

§ The motivation for the rule

§ An example where the rule is obeyed

§ An example where the rule is not obeyed

§ Cases where the rule is not applicable

§ Whether and how the rule can be checked by

automatic tools

The goal of this is to make sure that the programmers

understand the rule, understand and accept the motivation

of the rule, know how to check it, and know how to ask for

a justified derogation.

Since such a document can become rapidly quite thick,

having a quick summary of the rules with pointers to the

full explanation can make the document much more usable.

Communication

Coding standard should be perceived by programmers as a

help rather than a burden. It is of course important to have

clear and easily accessible documents to describe the rules,

but organizing team meetings, where the rules are

presented and their motivations explained, can be very

effective. Such general presentations bring several benefit:

§ they provide feed-back from the base to the QA

people, often resulting in improvements to the

rules;

§ they make acceptance of the rules easier; people

have no problem following rules when they

understand their purpose

§ with sufficient tool support, it will help making

the checking of the rule a routine, therefore

catching violations early in the development

process and avoiding massive rewritings.

Conclusion

A good set of programming rules is one which really

contributes to the quality of the code without putting

unnecessary burden on the programmer, is precisely

defined and well understood by all users, and easily

enforceable by automated tools. Defining such a set of is

far from easy: some rules are general, but others depend on

the particular context of the application.

It must be acknowledged that programming rules have to

be refined iteratively, and that good communications

between QA people and users is a key to achieving a set of

rules that really improves the quality of the project.

References

[1] http://www.adalog.fr/adacontrol2.htm

[2] Software Productivity Consortium, "Ada 95 Quality

and Style Guide".

[3] Stephen Leake, "Goddard Dynamic Simulator, Ada

Coding Standard",

http://fsw.gsfc.nasa.gov/gds/code_standards_ada.pdf.

