
 1

Ada User Journal Volume 26, Number 4, December 2005

On the Benefits for Industrials of Sponsoring Free

Software Development

J-P. Rosen

Adalog, 19-21 rue du 8 mai 1945, 94110 ARCUEIL, France; Tel: +33 1 41 24 31 40; email: rosen@adalog.fr

Abstract

Adalog [1] has developed two tools recently, one for
an industrial client

1
 (AdaSubst/AdaDep), and one for

Eurocontrol (AdaControl). Although the programs
were custom-made after the requirements of the
clients, in both cases, they allowed the tools to be
released as free software after they were delivered to
them. In this presentation, we describe the clients'
needs, the tools that were produced, and more
importantly our experience that releasing the tools as
free software was indeed beneficial to the clients, to
Adalog, and to the community at large.

Keywords: free-software, industrial experience,
semantic tools, ASIS.

Introduction

When an industrial company develops a software tool, it

usually keeps it for itself. The rationale is simple: if the

company pays for the software, it owns the software. Why

would a company pay for the benefits of others, by making

it freely available?

First it should be noted that, contrary to a common

misunderstanding, releasing a tool as free software does not

mean that the company does not own it anymore: free

software is not public domain software. The company holds

the copyright, and can do whatever it wants with it,

including reusing it in part or in whole for proprietary

programs. Making software free never diminishes the rights

of the owner, including the right of not making new

releases free (unlike users of the software who must

continue to distribute it freely, at least when the software is

provided under the terms of the GPL).

However, releasing the tool freely outside the company

implies that anybody can use it, including the company's

competitors; this may create concerns. On the other hand,

this also means that anybody can contribute to it and

improve it. Therefore, taking the decision of releasing a

program as free software is really a matter of balancing

benefits and drawbacks.

In this paper, we describe two experiments where the

releasing of paid developments as free software was

beneficial to the industrials. We do not claim that this can

be done in every case, but we argue that "paying for free

software" can be cost effective for certain classes of tools.

1
 who didn't want to be disclosed

1 The case of AdaSubst/AdaDep

1.1 Context

An industrial client had developed over the years several

big libraries dealing with its problem domains. Since this

effort started long ago, the code and the structure of the

libraries were still compatible with Ada83. And, as is often

the case when a code has evolved over many years, it came

to a point where a major restructuring was needed.

Axlog [2], Adalog's mother company, won the contract for

reorganizing this software components base. This implied,

among other things, breaking big packages into a hierarchy

of child packages, and often changing the names of the

provided services. Of course, such changes would break all

existing code that used the libraries. Therefore, the contract

stipulated that a tool should be provided to migrate code to

the new library structure. The initial intent was to provide

some kind of ad-hoc Python program to do this.

1.2 Solution

Adalog proposed to develop instead a general tool

(AdaSubst), based on ASIS (Ada Semantic Interface

Specification [3]), which would not be specific to this

migration, but could be used for any similar needs. A

dictionary file describes, for each entity, its old name and

the place where it was declared, and its new mapping, i.e.,

its new name and the new package where it is now. Typical

entries in the dictionary look like this:

Old_Pack => New_Pack

Old_Pack.Proc1 => New_Pack.Proc2

Pack1.Func{integer return integer} => New_Func

Big_Pack => Parent, Parent.Child1, Parent.Child2

all Print => Put

The first line means that the package "Old_Pack" is now

called "New_Pack"; the second line means that the

procedure "Proc1" in package "Old_Pack" has been

renamed to "Proc2" in package "New_Pack". The third line

is an example of dealing with overloaded declarations: only

the function "Func" that takes an Integer parameter and

returns an Integer value is changed into "New_Func". In

the case of the fourth line, a package has been split into a

parent package and two child units. The last line means that

all procedures named "Print" are now called "Put",

irrespectively of where they are located. Note that if a

package name changes, it is not necessary to specify the

transformation for all its elements, as long as the names are

not changed; only changed elements need to be described.

2 On the Benef i ts for Industr ia ls of Sponsor ing Free Sof tware Development

Volume 26, Number 4, December 2005 Ada User Journal

The tool makes all the necessary transformations on the

code, taking all Ada rules into account; use clauses are

properly modified, overloading is taken into account; when

a name changes in a generic, the change is propagated to all

uses in all instances, etc. The only case that is not fully

automated is for elements declared in a package that has

been split (like "Big_Pack" above). "With" and "use"

clauses are transformed to name all new packages, but for

an element given in prefixed notation, it is not possible to

know in which unit it resides know. In this case, the

transformation prefixes the name by the various possible

packages, separated by '?'. Since this does not compile, it is

easy to edit the construct to choose the appropriate package

manually. In short, the tool goes far beyond what could be

done by text substitution, even with sophisticated pattern

matching tools such as those provided by Python.

In addition, the migration itself required a detailed analysis

of which elements from all "withed" packages were used.

Adalog developed a companion tool (AdaDep) to ease this

analysis. It gives, for a given unit, which elements from

each withed unit is used and how many times, together with

the nature of the element. For example, given:

package Pack is

 I : Integer;

 package Internal is

 V : Float;

 end Internal;

end Pack;

with Pack, Text_IO;

use Pack, Text_IO;

procedure Sample is

begin

 I := 1;

 Internal.V := 3.0;

 Put_Line (Integer'Image (I + Integer(Internal.V)));

end Sample;

Running AdaDep will produce:

SAMPLE (body) =>

=> from ADA.TEXT_IO

 PUT_LINE - A_Procedure_Declaration * 1

=> from PACK

 I - A_Variable_Declaration * 2

=> from PACK.INTERNAL

 V - A_Variable_Declaration * 2

=> from STANDARD

 INTEGER - An_Ordinary_Type_Declaration * 2

In agreement with the client, AdaSubst and AdaDep were

released as free software. The client, who is not in the

language tools business, had no interest in keeping them

proprietary.

1.3 Lessons learned

In the end, the provided tool was far more powerful than

initially required. Although the requirement was to simply

minimize manual adjustments, it turned out that AdaSubst

properly processed automatically several 100 000's SLOCs

without any correction (except for ambiguities).

As for any other contract, the tool was delivered to the

client with a warranty period. It happened that shortly after

the end of this warranty period, the client reported a bug.

Had the tool been developed under a conventional contract,

we would have asked for a contract extension to make a fix.

However, since at that time the tool was free software, we

reacted like any developer of free software: we said "thank

you for reporting this", and fixed the problem. This little

story shows that by allowing the tool to be released as free

software, the client eventually got better (and free) support

than under a regular contract.

Even after the end of the contract, the tool continued to

evolve and improve, thanks to the community feed-back.

The client now has a better and more general tool than if it

had kept it proprietary.

The approach was also beneficial to Adalog: the tools are

commonly used inside the company, and many parts of

them could be reused in other developments. For example,

Adalog helped one of its clients in a migration to a different

target; representation clauses from the original system were

no more appropriate. It was easy to adapt Adasubst to

provide a new functionality that commented out all

representation clauses from the original program.

2 The case of AdaControl

2.1 Context

Eurocontrol (European Organisation for the Safety of Air

Navigation) is developing programs to manage air traffic

all over Europe. These programs are not life-critical, in the

sense that a failure would not cause planes to crash,

however a break-down of the system would cause huge

delays for all airplanes flying over Europe; the software is

therefore highly business critical. The system is made of

very big programs (over 1.1 MSLOC), developed and

maintained by a big team. With a project of this scale, it is

not possible to rely on individual discipline to make sure

that programming rules are being followed; Eurocontrol

needed a tool to enforce programming rules and search for

occurrences of bad or arguable programming practices.

Thanks to the cooperation with AdaCore, some of these

checks were incorporated into the GNAT compiler.

However, many rules were deemed too specific to be put in

a compiler, and it was felt that an independent controller

program, allowing parameterizable rules, was necessary.

There can be many such rules, and it was expected that new

ones would appear as more experience was gained by using

the tool (and this expectation was verified quite rapidly).

Therefore, the contract called for a general framework,

where rules could be added at will with minimum effort,

with just a minimum number of rules to be implemented as

part of the original contract, to serve as a proof of concept.

The bid was granted to Adalog. It is interesting to note that

since AdaSubst was free software, Adalog could show it in

its response to the bid, as a show-case of its know-how in

ASIS development.

J.-P. Rosen 3

Ada User Journal Volume 26, Number 4, December 2005

Like the first client, Eurocontrol is not in the business of

providing tools. On the other hand, such a tool was deemed

useful to the community at large. Moreover, since the tool

is easily extendable, Eurocontrol felt that it would benefit

from the contributions of other users. Therefore, it was

decided right from the start that the program would

eventually be released as free software.

2.2 Solution

Like AdaSubst, AdaControl is based on ASIS. Actually, it

is a perfect example of the kind of application that ASIS

was intended for.

The structure of AdaControl has been designed to make the

addition of new rules as simple as possible. It provides a

general framework that hides all the internal machinery and

offers a number of utilities that make the writing of rules

easier: various services are provided to deal with complex

issues like overloading, scope management, etc. Rules are

plugged in a special module, and rule writers have to care

only with the ASIS requests necessary to the rule.

Actually, AdaControl implements a full language to

describe the checks that are to be performed. Utilities are

provided to the rules for easy parsing of the rules'

parameters. There is an interpreter for this language,

allowing AdaControl to be used interactively as well as in

batch mode. Rules just register themselves to the

interpreter, thus adding new "verbs" to the command

language, without needing to change the interpreter itself.

An important feature of AdaControl is that rules can be

locally disabled by means of special comments in the code.

This allows for local derogations to a rule, which is very

important since there are almost always cases where

general rules are not applied for good reasons. The

mechanism for this is hidden in the module that reports

errors, therefore the writer of a rule does not have to care

about it: it is fully automatic.

Finally, the framework provides facilities for debugging

rules. This is a great help since, given the complex

structures used by ASIS, it is difficult to understand the

origin of a problem under a debugger.

The overall structure of AdaControl is thus made of three

well identified and separated parts: the framework itself

(specific to AdaControl), general ASIS utilities (useful for

any ASIS application), and the rules, as pictured below:

Important modules from AdaSubst were reused in

AdaControl; this raised no copyright issue, since both

programs were free software. In proprietary development, it

is often the case that similar modules must be developed

again, since it is not possible to provide a client with a

module developed for another client!

2.3 Lessons learned

In addition to the framework, the initial bid required the

implementation of only four rules. Later, an extension to

the contract supported the development of three more rules.

But since Adalog had similar needs for controlling its own

programs, we developed other rules for our own benefit.

The result was that the tool was delivered with more rules

than contractually required, and the number of rules

continued to grow after the end of the contract. At the time

of writing (version 1.4), 25 rules are implemented (each

with various parameters that allow them to check many

things). It is expected that the number of rules will

continue to grow as the tool gets more and more used.

As mentioned above, several modules were reused from

Adasubst, especially those dealing with command line

options and the way of specifying which units are to be

processed (including integration with GNAT's ".adp"

project files). On top of the usual benefits of reuse (no need

to rewrite, test, debug), this brought two benefits that are

rarely mentioned:

§ Uniformity. Since the modules are the same, the user

instructions for using Adasubst and AdaControl are the

same.

§ Reuse of documentation. Similarly, part of the user

documentation for AdaControl was reused from the

documentation from AdaSubst.

Thanks to the continued cooperation with Eurocontrol, all

the rules were checked against Eurocontrol's software, thus

providing an extensive test bench that would not have been

available if Adalog had developed the product in-house.

2.4 The consortium effect

Since its initial release, the tool has raised interest in

several other companies, which are willing to sponsor

further development, including the development of more

rules. At this point, the story of AdaControl seems to open

the way to a new model of commercial free-software:

cooperative development. The situation is that several

companies, from totally different markets, needed a tool;

none of them was willing to pay for the full development,

and their interests were too different to even think of

gathering them all in a consortium, just for the sake of

developing the tool. This is however exactly what

happened in practice: one company put the initial stake,

other companies contribute in proportion of their particular

needs, and in the end everybody benefits from a much more

sophisticated tool than could have been developed (custom

or in-house) by each of the companies separately.

Framework.

Framework.

Framework

Rules.Pragmas

Rules.Attributes

Rules

Thick_Queries

Utilities

4 On the Benef i ts for Industr ia ls of Sponsor ing Free Sof tware Development

Volume 26, Number 4, December 2005 Ada User Journal

3 Adalog's point of view

As explained above, releasing the tools as free software had

a number of benefits for the client. But from a vendor's

point of view, isn't it better to have a product that can be

sold under a usual proprietary license?

First, it should be noted that developing a tool with the

intent of selling it requires an important upfront investment.

Such tools require many months of work, before even

knowing if the tool will raise interest on the market place.

By having the development paid under contract, Adalog

could minimize the risk, and by having the tool released as

free software, Adalog continued to have the opportunity of

turning the development into a commercial product that can

be offered to others than the initial customer.

Building a successful product for a client is always good

for a company, but only the client knows about the quality

of the work. If the product is released as free software, then

anybody can assert the quality of the product. This makes

good publicity for the company… and also attracts the

sympathy of the community at large. It demonstrates

Adalog's know-how in the development of custom

language tools and its ability in ASIS development. The

tools now form a suite of Ada semantic utilities, and we

hope that they will attract new clients who need other

similar tools (and will hopefully accept that they be

released as free software too).

Since we consider these tools as fully commercial, Adalog

is selling support contracts for them, and develops (paying)

improvements on demand for clients with special needs.

All this means more business opportunities.

There is also a "business attracts business" effect. Adalog

has developed a custom analysis tool for a client, based on

the same technology as AdaControl. The availability of

AdaControl not only demonstrated the ability of Adalog for

designing semantic tools, but also gave the client the idea

of having a tool made to his own needs.

Finally, a side benefit is that the availability of these

programs on Adalog's web site [4] attracts many people to

visit us. Adalog uses a Web measurement service [5] to

measure the popularity of its site; among 269 sites in the

'"programming languages" category, Adalog ranks 9
th

,

which is a good indication of its own popularity… as well

as of the interest for Ada.

4 Difficulties

Sponsoring free software may create some difficulties,

because it goes against a number of established practices.

For example, all standard contracts stipulate that the

product becomes the property of the client. This in itself

does not preclude the software from being free, but in

practice, for free software to grow and flourish, it is

necessary to have a well identified, centralized entity to

which contributions can be sent. To most users, this will be

the name that appears in the copyright notice. It is therefore

more convenient if the company that made the initial

development keeps the copyright (possibly shared with the

client, as was done with Eurcontrol). This must be

negociated with the client.

The legal department of the client company may also on

occasions be unaware of what free software really means,

and raise concerns. It is then necessary to either educate the

lawyers, or find an arrangement that does not raise issues of

intellectual property. For example, it is possible to have a

contract by which the provider must "provide a tool"

(including a free one) to the client, and not state

contractually that the tool is actually developed for the

client. And of course, there is the issue of finding who, in

the client's company, is empowered to sign the letter

allowing the product to be released as free software…

Finally, it is clear that there are many tools whose nature is

not appropriate for this model of development; this can

work only for tools that are general enough to not require

any problem domain knowledge (which clearly belongs to

the client), and be usable in different application fields.

Conclusion

The story of AdaSubst/AdaDep and Adacontrol is another

example that it is possible to develop commercial, but free

software. Of course, Adalog is not the first company to take

this approach: obvious other examples are RedHat (and

others) with Linux distributions, MySQL for databases, and

AdaCore with the GNAT compiler. However, our approach

is different by using a business model that allows

sponsoring the developments by various, unrelated

companies, thus building a "virtual consortium".

In conclusion, releasing these tools as free software was

beneficial to the industrials, because they have tools that

are more powerful than if they had kept them proprietary.

Moreover, they benefit from continued maintenance and

improvements. But it is also beneficial to Adalog, as a

showcase of what the company can achieve, and because it

generates more business through custom improvements and

maintenance contracts. And last but not least, it is

beneficial to the Ada community at large, since anybody

can use the tool.

Web references

[1] http://www.adalog.fr:

Adalog's home page

[2] http://www.axlog.fr:

Axlog's home page

[3] http://www.sigada.org/wg/asiswg/asiswg.html:

ASIS working group.

[4] http://www.adalog.fr/compo2.htm:

Access to Adalog components, including AdaSubst,

AdaDep, and AdaControl.

[5] http://www.weborama.fr:

Web measurement service.

